Consider a system of three charges $\frac{q}{3},\frac{q}{3}$ and $\frac{-2q}{3}$ placed at points $A,B$ and $C$, respectively, as shown in the figure. Take $O$ to be the centre of the circle of radius $R$ and angle $CAB = 60^o$
The electric field at point $O$ is $\frac{q}{{8\pi {\varepsilon _0}{R^2}}}$ directed along the negative $x-$ axis
The potential energy of the system is zero
The magnitude of the force between the charges at $C$ and $B$ is $\frac{{{q^2}}}{{54\pi {\varepsilon _0}{R^2}}}$
The potential at point $O$ is $\frac{q}{{12\pi {\varepsilon _0}R}}$
The force between two charges $0.06\,m$ apart is $5\,N$. If each charge is moved towards the other by $0.01\,m$, then the force between them will become.........$N$
A charge of $4\,\mu C$ is to be divided into two. The distance between the two divided charges is constant. The magnitude of the divided charges so that the force between them is maximum, will be.
Two similar spheres having $ + \,q$ and $ - \,q$ charge are kept at a certain distance. $F$ force acts between the two. If in the middle of two spheres, another similar sphere having $ + \,q$ charge is kept, then it experience a force in magnitude and direction as
Four charge $Q _1, Q _2, Q _3$, and $Q _4$, of same magnitude are fixed along the $x$ axis at $x =-2 a - a ,+ a$ and $+2 a$, respectively. A positive charge $q$ is placed on the positive $y$ axis at a distance $b > 0$. Four options of the signs of these charges are given in List-$I$ . The direction of the forces on the charge q is given in List-$II$ Match List-$1$ with List-$II$ and select the correct answer using the code given below the lists.$Image$
List-$I$ | List-$II$ |
$P.$ $\quad Q _1, Q _2, Q _3, Q _4$, all positive | $1.\quad$ $+ x$ |
$Q.$ $\quad Q_1, Q_2$ positive $Q_3, Q_4$ negative | $2.\quad$ $-x$ |
$R.$ $\quad Q_1, Q_4$ positive $Q_2, Q_3$ negative | $3.\quad$ $+ y$ |
$S.$ $\quad Q_1, Q_3$ positive $Q_2, Q_4$ negative | $4.\quad$ $-y$ |
Six charges are placed at the corner of a regular hexagon as shown. If an electron is placed at its centre $O$, force on it will be: